The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.
نویسندگان
چکیده
Identification of all the protein components of the large subunit (39 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 39 S subunits followed by analysis of the resultant peptides by liquid chromatography and mass spectrometry. Peptide sequence information was used to search the human EST data bases and complete coding sequences were assembled. The human mitochondrial 39 S subunit has 48 distinct proteins. Twenty eight of these are homologs of the Escherichia coli 50 S ribosomal proteins L1, L2, L3, L4, L7/L12, L9, L10, L11, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L27, L28, L30, L32, L33, L34, L35, and L36. Almost all of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. No mitochondrial homologs to prokaryotic ribosomal proteins L5, L6, L25, L29, and L31 could be found either in the peptides obtained or by analysis of the available data bases. The remaining 20 proteins present in the 39 S subunits are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of the proteins has a clear homolog in D. melanogaster while all can be found in the genome of C. elegans. Ten of the 20 mitochondrial specific 39 S proteins have homologs in S. cerevisiae. Homologs of 2 of these new classes of ribosomal proteins could be identified in the Arabidopsis thaliana genome.
منابع مشابه
The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.
Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete codin...
متن کاملMrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria.
Translation in mitochondria utilizes a large complement of ribosomal proteins. Many mitochondrial ribosomal components are clearly homologous to eubacterial ribosomal proteins, but others appear unique to the mitochondrial system. A handful of mitochondrial ribosomal proteins appear to be eubacterial in origin but to have evolved additional functional domains. MrpL36p is an essential mitochondr...
متن کاملMapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly.
The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map...
متن کاملThe conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation
Mammalian mitochondria harbor a dedicated translation apparatus that is required for the synthesis of 13 mitochondrial DNA (mtDNA)-encoded polypeptides, all of which are essential components of the oxidative phosphorylation (OXPHOS) complexes. Little is known about the mechanism of assembly of the mitoribosomes that catalyze this process. Here we show that C7orf30, a member of the large family ...
متن کاملHuman G-proteins, ObgH1 and Mtg1, associate with the large mitochondrial ribosome subunit and are involved in translation and assembly of respiratory complexes
The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 47 شماره
صفحات -
تاریخ انتشار 2001